Academy of Sciences of the Czech Republic

 $(Gd,Y)_{3}(Gd,AI)_{5}O_{12}$

Multicomponent Garnet Scintillators

<u>¹Karol Bartosiewicz</u>, ¹V. Babin, ²K. Kamada, ^{2,3}A. Yoshikawa, ¹M. Nikl
¹Institute of Physics AS CR, Cukrovarnicka 10, Prague, 16253, Czech Republic
²NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
³Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577, Japan

Introduction and Aims

Why did we focus on Gd-based multicomponent garnets?

good chemical and radiation stability, excellent mechanical properties

LY 26 000 phot/MeV Decay time 50-60 ns

LY 46 000 phot/MeV Decay time 57 ns

 $Gd_3Ga_3Al_2O_{12}:Ce^{3+}$

Why did we focus on Gd-based multicomponent garnets?

What is the relationship between host composition and electronic structure?

What is the actual site occupation situation in multicomponent garnets?

What is the influence of manufacturing processes on concentration of point and antisite defects?

How about their temperature dependent traits of light yield, time response and energy resolution?

Temperature dependence of Gd^{3+} emission intensiets and decay times related to its ${}^{6}P_{x}-{}^{8}S$ transition peaking at 312 nm at the set of undoped and Ce-doped matrices

6

Experiments

✓ decay time

Results and Discussion

Absorption, photoluminescence excitation and emission characteristics

Temperature dependence characteristics

Temperature dependence characteristic

Decay curves of the intrinsic Gd^{3+} emission of $Gd_2Y_1Ga_1AI_4O_{12}$ single crystals as a function of temperature.

Photoluminescence excitation and emission characteristics

PLE spectrum monitored at maximum of Ce³⁺ emission. Presence of weak line at 270 nm (Gd³⁺ – related) confirm the energy transfer from Gd³⁺ to Ce³⁺ PL excitation and emission spectra of $Gd_3Ga_3Al_2O_{12}$:Ce³⁺. The emission of Ce³⁺ is observed upon excitation at ⁸S – ⁶l_J absorption band of Gd³⁺. (ET from Gd³⁺ to Ce³⁺ ions).

Results and Discussion

Temperature dependence characteristics

Gd³⁺ decays in undoped and Ce - doped **Gd₃Ga₃Al₂O₁₂** as a function of temperature Gd³⁺ and Ce³⁺ decays in Gd₃Ga₃Al₂O₁₂:Ce³⁺ as a function of temperature

Temperature dependence characteristics

Gd and Ce – related emission bands in $Gd_3Ga_3Al_2O_{12}$:Ce upon excitation at ${}^8S \rightarrow {}^6l_J$ absorption band of Gd³⁺ as a function of temperature

Crystals grown by Czochralski method in IP Prague laboratory (seeds from C&A Japan)

In Tb³⁺ grown crystal the emission spectrum shows full set of emission lines starting from ⁵D₃ and ⁵D₄ levels of Tb³⁺. PLE spectrum shows 4f-5d transition of Tb³⁺ below 280 nm, fingerprint of Gd³⁺ absorption lines at 305-210 nm, the broad band around 450 nm might be due to Ce³⁺ contamination. Decay time of 544 nm line is 3.3 ms, consistent with strongly forbidden character of Tb³⁺ 4f-4f transitions

- Energy migration processes over Gd-sublattice were observed in samples with two or more Gd atoms
- \checkmark In undoped samples concentration quenching in Gd³⁺ sublattice was observed.
- ✓ The temperature dependence of carried out measurements shown phonon assistance in energy migration
- ✓ Nonradiative energy transfer from Gd³⁺ to Ce³⁺ in the Ce-doped Gd₃Ga₃Al₂O₁₂ was proved.

For financial support from

Marie Curie Initial Training Network LUMINET, grant agreement no. 316906.

and to you for your attention!